Общеканальная система сигнализации N7 (ОКС-7)

Общеканальная система сигнализации N7 (ОКС-7)

Для обмена информацией между функциональными элементами на интерфейсах A, B, C, D, E, F, G принята система общеканальной сигнализации №7 (ОКС-7 или SS7).

ОКС-7 является специализированной сетью передачи данных с коммутацией пакетов переменной длины (до 274 байтов). Пакеты называют сигнальными единицами.

Узлы сети ОКС-7 принято называть сигнальными пунктами (SP – Signaling Point). Атрибутами сигнального пункта являются:

  • SPC – Signaling Point Code – код сигнального пункта (14 бит)
  • NI – Network Indicator – идентификатор сети (2 бита)

NI=10 – национальная сеть

NI=11 – ведомственная или региональная сеть

NI=00 – международная сеть

Код SPC позволяет адресовать сигнальные сообщения между узлами в пределах одной сети ОКС-7, например в пределах одной национальной сети. Его недостаточно для адресации сообщений между сигнальными пунктами различных сетей ОКС-7.

 

 

 

Три нижних уровня протоколов ОКС-7 образуют часть передачи сообщений (MTP). Выше расположены пользователи MTP:

ISUP и SCCP. Они подготавливают и передают в MTP сообщения (User Information). MTP дополняет эти сообщения соответствующей служебной информацией. В результате формируется сигнальная единица сообщения (MSU – Message Signaling Unit).

В функции 3-го уровня MTP входит маршрутизация сигнальных единиц. С этой целью к пользовательскому сообщению добавляют метку маршрутизации (Routing Label) и информационный октет (SIO). Тем самым указывают коды сигнальных пунктов отправителя (OPC) и получателя (DPC) сообщения, пользователя MTP и идентификатор сети (NI).

Уровень 2 MTP обеспечивает достоверной обмен информацией между двумя сигнальными пунктами. С этой целью в сигнальную единицу включают проверочные биты (CK). Номера сигнальных единиц, передаваемых в прямом и обратном направлениях (FSN и BSN) и соответствующие биты-индикаторы (FIB и BIB) обеспечивают повторную передачу сигнальных единиц при выявлении ошибок на приемной стороне.

Уровень 1 определяет физические, электрические и функциональные характеристики тракта передачи сигнализации и устройств доступа. Для передачи сигнализации  используют цифровой канал со скоростью передачи 64 кбит/с. Часто для ОКС-7 выделяют 16-й канал 32-х канального тракта E1, однако это не является обязательным.

Рис. 1.

 

Структура протоколов ОКС-7

MTP – Message Transfer Part – часть передачи сообщений

ISUP – Integrated Services Digital Network (ISDN) User Part – пользователькая часть сети ISDN

SCCP – Signaling Connection Control Part – часть управления сигнальными соединениями

TCAP – Transaction Capabilities Application Part – прикладная часть возможностей транзакций

BSSAP – Base Station System Application Part – прикладная часть подсистемы базовых станций GSM. Состоит из:

  • DTAP (Direct Transfer Part) - прикладной части обмена сигнализацией между MS и MSC,
  • BSSMAP (BSS Management Application Part) – прикладной части взаимодействия BSC и MSC

RANAP – Radio Access Network Application Part – прикладная часть подсистемы радиодоступа в сетях UMTS

MAP– Mobile Application Part – прикладная часть поддержки мобильности сетей GSM

INAP– Intelligent Network Application Part – прикладная часть интеллектуальных сетей (фиксированная связь)

CAP – CAMEL Application Part – прикладная часть интеллектуальных сетей (подвижная связь)

Рис. 2.

 

Формат сигнальной единицы сообщений представлен на рис. 3.

Рис. 3.

F – Flag (01111110) – флаг начала и конца сигнальной единицы

BSN – Backward Sequence Number – обратный порядковый номер

BIB – Backward Indicator Bit – обратный бит-индикатор

FSN – Forward Sequence Number – прямой порядковый номер

FIB – Forward Indicator Bit – прямой бит-индикатор

LI – Length indicator – указывает число байт, следующих за LI; идентифицирует тип сигнальной единицы:

0 – Fill-In Signal Unit (FISU) –заполняющая сигнальная единица

1 или 2 – Link Status Signal Unit (LSSU) – сигнальная единица сигнального звена

более 2 – Message Signal Unit (MSU) – сигнальная единица сообщения

 

SIO – Service information octet – октет информации о сервисе

SI – Service Indicator: ISUP SCCP Link Status

NI – Network Indicator (идентификатор сети): 00; 10; 11.

SIF –  Signaling information field – информационное поле (до 272 октетов)

DPC – destination point code – код пункта назначения

OPC – originating point code – код пункта отправления

SLS – signaling link selection field – поле выбора тракта сигнализации

CK – Check bits – проверочные биты

 

 

ISUP реализует функции управления вызовами с возможностью предоставления абонентам услуг ISDN.

Подсистема ISUP использует стандартные сообщения, формат которых определен спецификациями Q.767.

Сообщения, используемые при установлении и окончании вызова:

  • IAM –  Initial Address Мessage – начальное адресное сообщение
  • SAM – Subsequent Address Message – последующее адресное сообщени
  • ACM –  Address Complete Message – адрес полный
  • ANM –  Answer Message – ответ
  • REL –  Release Message – освобождение
  • RCM –  Release Complete Message – освобождение выполнено

Сообщения ISUP передают по принципу «от звена к звену».

Помимо метки маршрутизации, в поле SIF включаются идентификатор канала (CIC – Circuit Identification Code), однозначно связывающий данное сигнальное сообщение с определенным каналом трафика.

Рис. 4.

Последовательность установления вызова SCCP реализует обмен сигнализацией, несвязанной непосредственно с вызовами и каналами трафика.

В отличие от ISUP SCCP позволяет устанавливать сквозные сигнальные соединения по принципу «из конца в конец».

Формат поля SIF при передаче сообщения SCCP:

Рис. 5.

SCCP обеспечивает передачу сообщений двух типов:

1) Без установления логического соединения (Connection less). Используют MAP, INAP, CAP и др. через TCAP, BSSAP (часть BSSMAP), рис. 6.

 

2) C установлением логического соединения (Connection oriented). Использует BSSAP (DTAP и часть BSSMAP), RANAP (рис. 7).

Рис. 6.

Рис. 7.

 

SCCP обеспечивает дополнительные возможности адресации сообщений.

Получателя и отправителя сообщений можно адресовать, используя:

  • номер подсистемы (SSN –  Subsystem Number);
  • глобальный заголовок (GT – Global Title).

Номер подсистемы позволяет адресовать сообщения различным сетевым элементам, имеющим одинаковый SPC.

Можно дифференцировать сообщения, адресованные MSC, VLR, HLR, EIR, находящимся в одном узле.

Номера некоторых подсистем:

Глобальный заголовок (GT) используют для адресации SCCP сообщений, направляемых в другие сети ОКС-7.

Например, HLR сети X (NI=10) посылает SCCP сообщение VLR сети Y (NI=10), через транзитную сеть Z (NI=00). Непосредственно адресовать сообщение с использованием только SPC нельзя, так как код сигнального пункта не является уникальным. Однако можно использовать ISDN номер VLR, который и образует GT.

 

 

Сигнальную единицу на исходящем узле посредством SPC адресуют не непосредственно в узел-получатель, а в пограничный шлюзовый узел. При этом указывают, что в сообщении содержится информация о GT, например в виде ISDN номера VLR. Шлюзовый узел, принадлежащий двум сетям (NI=10 и NI=00), распаковывает SCCP сообщение, извлекает из него GT, анализирует его и определяет SPC следующего пограничного узла (в своей сети).

В сообщение, отправляемое из одного шлюза в другой, опять вкладывают GT.

Второй шлюз также распаковывает сообщение, извлекает из него GT, и на основании его анализа формирует SCCP сообщение в узел-получатель, используя SPC этого узла. GT в это сообщение уже не вкладывают.

Рис. 8.

DTAP (Direct Transfer Part)

 

 

 

 BSSMAP (BSS Management Application Part)

 

 

MAP – Mobile Application Part

 

Служит для обновления данных о местоположении в VLR, HLR, SIM. Инициируется MS в 3-х случаях:

  • при смене локальной зоны,
  • при включении,
  • при истечении таймера периодической локализации.

 

1. MS инициирует процедуру локализации, посылая сообщение Location_Update_Request (TMSI, LAISIM ).

BSS передает в MSC сообщение: BSSAP: LOCATION_UPDATING_Request (TMSI, LAISIM, LAIBCCH).

В новом MSC нет данных, позволяющих преобразовать LAISIM – Адрес старого VLR:

2. MSC запрашивает у MS IMSI: BSSAP: IDENTITY_Request.

3. MS возвращает IMSI в открытом виде:BSSAP: IDENTITY_Response (IMSI).

4. VLR преобразует первые цифры IMSI (MCC+MNC+HLRID) в адрес HLR в сети ОКС-7.

5. VLR запрашивает у HLR аутентификационные триплеты: MAP: SEND_AUTHENTICATION_INFO_Request (IMSI).

6. HLR пересылает запрос в AC, AC генерирует триплеты, возвращает их в HLR, а тот пересылает их в VLR:

MAP: SEND_AUTHENTICATION_INFO_Response (5 триплетов).

Далее переходят к п.10

В новом MSC есть данные, позволяющих преобразовать LAISIM – Адрес старого VLRN:

7. Новый VLR определяет адрес старого VLR в сети ОКС.

8. Новый VLR делает запрос в старый VLR: MAP: SEND_IDENTIFICATION_Request (TMSI).

9. Старый VLR возвращает IMSI и аутентификационные триплеты: MAP: SEND_IDENTIFICATION_Response (IMSI, триплеты).

10. Проводится аутентификация абонента.

11. VLR информирует HLR о регистрации MS: MAP: UPDATE_LOCATION_Request (IMSI, MSC-ISDN, VLR-ISDN).

12. HLR дает команду старому VLR об удалении абонента из базы данных: MAP: CANCEL_LOCATION_Request (IMSI).

13. Старый VLR удаляет абонента и подтверждает удаление: MAP: CANCEL_LOCATION_Response.

14. HLR принимает решение об обслуживании абонента в новом коммутаторе. При положительном решении информирует новый

VLR об услугах, доступных абоненту: MAP: INSERT_SUBSCRIBER_DATA_Request (MSISDN, данные об основных и

дополнительных услугах абонента, о контролируемых VLR запретах, о подписке CAMEL и т.д.).

15. VLR подтверждает полученную абонентскую информацию: MAP: INSERT_SUBSCRIBER_DATA_Response

16. HLR подтверждает регистрацию абонента: MAP: UPDATE_LOCATION_Response (HLR-ISDN).

17. VLR возвращает MS подтверждение регистрации: BSSAP: LOCATION_UPDATING_ACCEPT (TMSI, LAI).

В результате проведенного обмена сигнальной информацией:

  • В SIM-карте MS записано новое значение LAI и новый TMSI.
  • В новом VLR создана запись об абоненте, включая данные о LA, в которой абонент находится.
  • В старом VLR запись об абоненте ликвидирована.
  • В HLR обновлены данные о местоположении MS – сохранены адреса MSC и VLR.

Исходящий вызов

Рис. 9

Входящий вызов

Доставка вызова в обслуживающий коммутатор:

Рис. 10.

MSRN – Mobile Station Roaming Number

1. В GMSC поступает начальное адресное сообщение: ISUP: IAM (MSISDN-B).

2. GMSC преобразует первые цифры MSISDN-B в адрес HLR-B в сети ОКС-7.

3. GMSC направляет в HLR-B запрос о маршрутизации вызова: MAP: SEND_ROUTING_INFO_Request (MSISDN-B).

4. HLR проверяет: - нахождение абонента в разрешенной сети;

- подписку на услугу;

- отсутствие запретов;

- необходимость переадресации.

5. HLR преобразует VLR-ISDN в адрес VLR в сети ОКС-7.

6. HLR направляет в VLR запрос о предоставлении роумингового номера: MAP: PROVIDE_ROAMING_NUMBER_Request (IMSI).

7. VLR проверяет, подключен ли абонент в данный момент (IMSI Attached/Detached). При положительном результате – ассоциирует

IMSI с одним из MSRN из диапазона номеров (например, присваивает абоненту MSRN 7-495-xyz-3333).

8. VLR возвращает в HLR выделенный роуминговый номер: MAP: PROVIDE_ROAMING_NUMBER_Response (MSRN).

9. HLR пересылает MSRN в GMSC: MAP: SEND_ROUTING_INFO_Response (MSRN).

10.GMSC анализирует первые цифры MSRN и определяет маршрут, формирует и отправляет IAM, в которое включает MSRN. IAM

поступает в MSC: ISUP: IAM (MSRN).

11.MSC ассоциирует поступивший вызов с определенным абонентом (с IMSI) и освобождает MSRN. MSC запрашивает у VLR

значения LAI и TMSI. Преобразует LAI в адрес того BSC, который обслуживает соты данной LA.

12.MSC дает команду BSC послать пейджинговые сообщения по всем сотам локальной области: BSSAP: Paging (TMSI, LAI, IMSI).

BSC организует передачу пейджинга на радиоинтерфейсе Paging Request (TMSI).

Установление входящего вызова (обслуживающий MSC – MS):

Рис. 11.

 

Книга "Мобильная связь на пути к 6G"Подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике "Мобильная связь на пути к 6G".

 

Читайте также:

Интервью первого генерального директора Северо-Западного GSM (Мегафон)

Канал о технологиях и известных людях в телекоме и ИТ "ТНД". Подписывайтесь!

Видео о 5G простым языком. Лекции по мобильной связи пятого поколения (5G)

Что такое 5G?

5G в России

Общие сведения о технологии LTE-Advanced

Преимущества и недостатки 3G по сравнению с 2G

LTE

HSDPA

Международный Съезд ведущих специалистов отрасли телекоммуникаций TELECOMTREND. Присоединяйтесь!

На пути к 5G. Вебинар "Технические основы 4G/LTE и 5G" (для технических специалистов)

Яндекс.Метрика