Для обмена информацией между функциональными элементами на интерфейсах A, B, C, D, E, F, G принята система общеканальной сигнализации №7 (ОКС-7 или SS7).
ОКС-7 является специализированной сетью передачи данных с коммутацией пакетов переменной длины (до 274 байтов). Пакеты называют сигнальными единицами.
Узлы сети ОКС-7 принято называть сигнальными пунктами (SP – Signaling Point). Атрибутами сигнального пункта являются:
NI=10 – национальная сеть
NI=11 – ведомственная или региональная сеть
NI=00 – международная сеть
Код SPC позволяет адресовать сигнальные сообщения между узлами в пределах одной сети ОКС-7, например в пределах одной национальной сети. Его недостаточно для адресации сообщений между сигнальными пунктами различных сетей ОКС-7.
Три нижних уровня протоколов ОКС-7 образуют часть передачи сообщений (MTP). Выше расположены пользователи MTP:
ISUP и SCCP. Они подготавливают и передают в MTP сообщения (User Information). MTP дополняет эти сообщения соответствующей служебной информацией. В результате формируется сигнальная единица сообщения (MSU – Message Signaling Unit).
В функции 3-го уровня MTP входит маршрутизация сигнальных единиц. С этой целью к пользовательскому сообщению добавляют метку маршрутизации (Routing Label) и информационный октет (SIO). Тем самым указывают коды сигнальных пунктов отправителя (OPC) и получателя (DPC) сообщения, пользователя MTP и идентификатор сети (NI).
Уровень 2 MTP обеспечивает достоверной обмен информацией между двумя сигнальными пунктами. С этой целью в сигнальную единицу включают проверочные биты (CK). Номера сигнальных единиц, передаваемых в прямом и обратном направлениях (FSN и BSN) и соответствующие биты-индикаторы (FIB и BIB) обеспечивают повторную передачу сигнальных единиц при выявлении ошибок на приемной стороне.
Уровень 1 определяет физические, электрические и функциональные характеристики тракта передачи сигнализации и устройств доступа. Для передачи сигнализации используют цифровой канал со скоростью передачи 64 кбит/с. Часто для ОКС-7 выделяют 16-й канал 32-х канального тракта E1, однако это не является обязательным.
Рис. 1.
Структура протоколов ОКС-7
MTP – Message Transfer Part – часть передачи сообщений
ISUP – Integrated Services Digital Network (ISDN) User Part – пользователькая часть сети ISDN
SCCP – Signaling Connection Control Part – часть управления сигнальными соединениями
TCAP – Transaction Capabilities Application Part – прикладная часть возможностей транзакций
BSSAP – Base Station System Application Part – прикладная часть подсистемы базовых станций GSM. Состоит из:
RANAP – Radio Access Network Application Part – прикладная часть подсистемы радиодоступа в сетях UMTS
MAP– Mobile Application Part – прикладная часть поддержки мобильности сетей GSM
INAP– Intelligent Network Application Part – прикладная часть интеллектуальных сетей (фиксированная связь)
CAP – CAMEL Application Part – прикладная часть интеллектуальных сетей (подвижная связь)
Рис. 2.
Формат сигнальной единицы сообщений представлен на рис. 3.
Рис. 3.
F – Flag (01111110) – флаг начала и конца сигнальной единицы
BSN – Backward Sequence Number – обратный порядковый номер
BIB – Backward Indicator Bit – обратный бит-индикатор
FSN – Forward Sequence Number – прямой порядковый номер
FIB – Forward Indicator Bit – прямой бит-индикатор
LI – Length indicator – указывает число байт, следующих за LI; идентифицирует тип сигнальной единицы:
0 – Fill-In Signal Unit (FISU) –заполняющая сигнальная единица
1 или 2 – Link Status Signal Unit (LSSU) – сигнальная единица сигнального звена
более 2 – Message Signal Unit (MSU) – сигнальная единица сообщения
SIO – Service information octet – октет информации о сервисе
SI – Service Indicator: ISUP SCCP Link Status
NI – Network Indicator (идентификатор сети): 00; 10; 11.
SIF – Signaling information field – информационное поле (до 272 октетов)
DPC – destination point code – код пункта назначения
OPC – originating point code – код пункта отправления
SLS – signaling link selection field – поле выбора тракта сигнализации
CK – Check bits – проверочные биты
ISUP реализует функции управления вызовами с возможностью предоставления абонентам услуг ISDN.
Подсистема ISUP использует стандартные сообщения, формат которых определен спецификациями Q.767.
Сообщения, используемые при установлении и окончании вызова:
Сообщения ISUP передают по принципу «от звена к звену».
Помимо метки маршрутизации, в поле SIF включаются идентификатор канала (CIC – Circuit Identification Code), однозначно связывающий данное сигнальное сообщение с определенным каналом трафика.
Рис. 4.
Последовательность установления вызова SCCP реализует обмен сигнализацией, несвязанной непосредственно с вызовами и каналами трафика.
В отличие от ISUP SCCP позволяет устанавливать сквозные сигнальные соединения по принципу «из конца в конец».
Формат поля SIF при передаче сообщения SCCP:
Рис. 5.
SCCP обеспечивает передачу сообщений двух типов:
1) Без установления логического соединения (Connection less). Используют MAP, INAP, CAP и др. через TCAP, BSSAP (часть BSSMAP), рис. 6.
2) C установлением логического соединения (Connection oriented). Использует BSSAP (DTAP и часть BSSMAP), RANAP (рис. 7).
Рис. 6.
Рис. 7.
SCCP обеспечивает дополнительные возможности адресации сообщений.
Получателя и отправителя сообщений можно адресовать, используя:
Номер подсистемы позволяет адресовать сообщения различным сетевым элементам, имеющим одинаковый SPC.
Можно дифференцировать сообщения, адресованные MSC, VLR, HLR, EIR, находящимся в одном узле.
Номера некоторых подсистем:
Глобальный заголовок (GT) используют для адресации SCCP сообщений, направляемых в другие сети ОКС-7.
Например, HLR сети X (NI=10) посылает SCCP сообщение VLR сети Y (NI=10), через транзитную сеть Z (NI=00). Непосредственно адресовать сообщение с использованием только SPC нельзя, так как код сигнального пункта не является уникальным. Однако можно использовать ISDN номер VLR, который и образует GT.
Сигнальную единицу на исходящем узле посредством SPC адресуют не непосредственно в узел-получатель, а в пограничный шлюзовый узел. При этом указывают, что в сообщении содержится информация о GT, например в виде ISDN номера VLR. Шлюзовый узел, принадлежащий двум сетям (NI=10 и NI=00), распаковывает SCCP сообщение, извлекает из него GT, анализирует его и определяет SPC следующего пограничного узла (в своей сети).
В сообщение, отправляемое из одного шлюза в другой, опять вкладывают GT.
Второй шлюз также распаковывает сообщение, извлекает из него GT, и на основании его анализа формирует SCCP сообщение в узел-получатель, используя SPC этого узла. GT в это сообщение уже не вкладывают.
Рис. 8.
DTAP (Direct Transfer Part)
BSSMAP (BSS Management Application Part)
MAP – Mobile Application Part
Служит для обновления данных о местоположении в VLR, HLR, SIM. Инициируется MS в 3-х случаях:
1. MS инициирует процедуру локализации, посылая сообщение Location_Update_Request (TMSI, LAISIM ).
BSS передает в MSC сообщение: BSSAP: LOCATION_UPDATING_Request (TMSI, LAISIM, LAIBCCH).
В новом MSC нет данных, позволяющих преобразовать LAISIM – Адрес старого VLR:
2. MSC запрашивает у MS IMSI: BSSAP: IDENTITY_Request.
3. MS возвращает IMSI в открытом виде:BSSAP: IDENTITY_Response (IMSI).
4. VLR преобразует первые цифры IMSI (MCC+MNC+HLRID) в адрес HLR в сети ОКС-7.
5. VLR запрашивает у HLR аутентификационные триплеты: MAP: SEND_AUTHENTICATION_INFO_Request (IMSI).
6. HLR пересылает запрос в AC, AC генерирует триплеты, возвращает их в HLR, а тот пересылает их в VLR:
MAP: SEND_AUTHENTICATION_INFO_Response (5 триплетов).
Далее переходят к п.10
В новом MSC есть данные, позволяющих преобразовать LAISIM – Адрес старого VLRN:
7. Новый VLR определяет адрес старого VLR в сети ОКС.
8. Новый VLR делает запрос в старый VLR: MAP: SEND_IDENTIFICATION_Request (TMSI).
9. Старый VLR возвращает IMSI и аутентификационные триплеты: MAP: SEND_IDENTIFICATION_Response (IMSI, триплеты).
10. Проводится аутентификация абонента.
11. VLR информирует HLR о регистрации MS: MAP: UPDATE_LOCATION_Request (IMSI, MSC-ISDN, VLR-ISDN).
12. HLR дает команду старому VLR об удалении абонента из базы данных: MAP: CANCEL_LOCATION_Request (IMSI).
13. Старый VLR удаляет абонента и подтверждает удаление: MAP: CANCEL_LOCATION_Response.
14. HLR принимает решение об обслуживании абонента в новом коммутаторе. При положительном решении информирует новый
VLR об услугах, доступных абоненту: MAP: INSERT_SUBSCRIBER_DATA_Request (MSISDN, данные об основных и
дополнительных услугах абонента, о контролируемых VLR запретах, о подписке CAMEL и т.д.).
15. VLR подтверждает полученную абонентскую информацию: MAP: INSERT_SUBSCRIBER_DATA_Response
16. HLR подтверждает регистрацию абонента: MAP: UPDATE_LOCATION_Response (HLR-ISDN).
17. VLR возвращает MS подтверждение регистрации: BSSAP: LOCATION_UPDATING_ACCEPT (TMSI, LAI).
В результате проведенного обмена сигнальной информацией:
Исходящий вызов
Рис. 9
Входящий вызов
Доставка вызова в обслуживающий коммутатор:
Рис. 10.
MSRN – Mobile Station Roaming Number
1. В GMSC поступает начальное адресное сообщение: ISUP: IAM (MSISDN-B).
2. GMSC преобразует первые цифры MSISDN-B в адрес HLR-B в сети ОКС-7.
3. GMSC направляет в HLR-B запрос о маршрутизации вызова: MAP: SEND_ROUTING_INFO_Request (MSISDN-B).
4. HLR проверяет: - нахождение абонента в разрешенной сети;
- подписку на услугу;
- отсутствие запретов;
- необходимость переадресации.
5. HLR преобразует VLR-ISDN в адрес VLR в сети ОКС-7.
6. HLR направляет в VLR запрос о предоставлении роумингового номера: MAP: PROVIDE_ROAMING_NUMBER_Request (IMSI).
7. VLR проверяет, подключен ли абонент в данный момент (IMSI Attached/Detached). При положительном результате – ассоциирует
IMSI с одним из MSRN из диапазона номеров (например, присваивает абоненту MSRN 7-495-xyz-3333).
8. VLR возвращает в HLR выделенный роуминговый номер: MAP: PROVIDE_ROAMING_NUMBER_Response (MSRN).
9. HLR пересылает MSRN в GMSC: MAP: SEND_ROUTING_INFO_Response (MSRN).
10.GMSC анализирует первые цифры MSRN и определяет маршрут, формирует и отправляет IAM, в которое включает MSRN. IAM
поступает в MSC: ISUP: IAM (MSRN).
11.MSC ассоциирует поступивший вызов с определенным абонентом (с IMSI) и освобождает MSRN. MSC запрашивает у VLR
значения LAI и TMSI. Преобразует LAI в адрес того BSC, который обслуживает соты данной LA.
12.MSC дает команду BSC послать пейджинговые сообщения по всем сотам локальной области: BSSAP: Paging (TMSI, LAI, IMSI).
BSC организует передачу пейджинга на радиоинтерфейсе Paging Request (TMSI).
Установление входящего вызова (обслуживающий MSC – MS):
Рис. 11.
Подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике "Мобильная связь на пути к 6G".
Интервью первого генерального директора Северо-Западного GSM (Мегафон)
Канал о технологиях и известных людях в телекоме и ИТ "ТНД". Подписывайтесь!
Общие сведения о технологии LTE-Advanced
Преимущества и недостатки 3G по сравнению с 2G
Международный Съезд ведущих специалистов отрасли телекоммуникаций TELECOMTREND. Присоединяйтесь!
На пути к 5G. Вебинар "Технические основы 4G/LTE и 5G" (для технических специалистов)