Что такое "поколение" сетей сотовой связи?

Поколение сотовой связи - это набор функциональных возможностей работы сети, а именно: регистрация абонента, установление вызова, передача информации между мобильным телефоном и базовой станцией по радиоканалу, процедура установления вызова между абонентами, шифрование, роуминг в других сетях, а также набор услуг, предоставляемых абоненту.

 

 

История сотовой связи

Эволюция систем сотовой связи включает в себя несколько поколений 1G, 2G3G и 4G. Ведутся работы в области создания сетей мобильной связи нового пятого поколения (5G). Стандарты различных поколений, в свою очередь, подразделяются на аналоговые (1G) и цифровые системы связи (остальные).

Рассмотрим их подробнее.

Связь всегда имела большое значение для человечества. Когда встречаются два человека, для общения им достаточно голоса, но при увеличении расстояния между ними возникает потребность в специальных инструментах. Когда в 1876 году Александр Грэхем Белл изобрел телефон, был сделан значительный шаг, позволивший общаться двум людям, однако для этого им необходимо было находиться рядом со стационарно установленным телефонным аппаратом! Более ста лет проводные линии были единственной возможностью организации телефонной связи для большинства людей. Системы радиосвязи, не зависящие от проводов для организации доступа к сети, были разработаны для специальных целей (например, армия, полиция, морской флот и замкнутые сети автомобильной радиосвязи), и, в конце концов, появились системы, позволившие людям общаться по телефону, используя радиосвязь. Эти системы предназначались главным образом для людей, ездивших на машинах, и стали известны как телефонные системы подвижной связи.

 

Первое поколение мобильной связи (1G)

Официальным днем рождения сотовой связи считается 3 апреля 1973 года, когда глава подразделения мобильной связи компании Motorola Мартин Купер позвонил начальнику исследовательского отдела AT&T Bell Labs Джоэлю Энгелю, находясь на оживленной Нью-йоркской улице. Именно эти две компании стояли у истоков мобильной телефонии. Коммерческую реализацию данная технология получила 11 лет спустя, в 1984 году, в виде мобильных сетей первого поколения (1G), которые были основаны на аналоговом способе передачи информации.

Основными стандартами аналоговой мобильной связи стали AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба) (США, Канада, Центральная и Южная Америка, Австралия), TACS (Total Access Communications System - тотальная система доступа к связи) (Англия, Италия, Испания, Австрия, Ирландия, Япония) и NMT (Nordic Mobile Telephone – северный мобильный телефон) (страны Скандинавии и ряд других стран). Были и другие стандарты аналоговой мобильной связи – С-450 в Германии и Португалии, RTMS (Radio Telephone Mobile System – радиотелефонная мобильная система) в Италии, Radiocom 2000 во Франции. В целом мобильная связь первого поколения представляла собой лоскутное одеяло несовместимых между собой стандартов.

 Табл. 1 Характеристики аналоговых стандартов сотовой связи

Характеристика

AMPS

TACS

NMT-450

NMT-900

Radiocom 2000

NTT

Диапазон частот, МГц

825-845

870-890

935-950

(917-933)

890-905

(872-888)

453-457,5

463-467,5

935-960

890-915

424.8-427.9 418.8-421.9

925-940 870-885

Радиус соты,км

2-20

2-20

2-45

0,5-20

5-20

5-10

Мощность передатчика БС, Вт

45

50

-

-

-

25

Ширина полосы частот канала, кГц

30 (12,5)

25

25

25/12,5

12,5

25

Время переключения на границе соты, мс

250

290

1250

270

-

800

Минимальное отношение сигнал\шум, дБ

10 (6,5)

10

15

15

-

15

 

Во времена 1G никто не думал об услугах передачи данных – это были аналоговые системы, задуманные и разработанные исключительно для осуществления голосовых вызовов и некоторых других скромных возможностей. Модемы существовали, однако из-за того, что беспроводная связь более подвержена шумам и искажениям, чем обычная проводная, скорость передачи данных была невероятно низкой. К тому же, стоимость минуты разговора в 80-х была такой высокой, что мобильный телефон мог считаться роскошью.

Во всех аналоговых стандартах применяется частотная (ЧМ) или фазовая (ФМ) модуляция для передачи речи и частотная манипуляция для передачи информации управления. Этот способ имеет ряд существенных недостатков: возможность прослушивания разговоров другими абонентами, отсутствие эффективных методов борьбы с замираниями сигналов под влиянием окружающего ландшафта и зданий или вследствие передвижения абонентов. Для передачи информации различных каналов используются различные участки спектра частот - применяется метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA). С этим непосредственно связан основной недостаток аналоговых систем - относительно низкая емкость, являющаяся следствием недостаточно рационального использования выделенной полосы частот при частотном разделении каналов.

В каждой стране была разработана собственная система, несовместимая с остальными с точки зрения оборудования и функционирования. Это привело к тому, что возникла необходимость в создании общей европейской системы подвижной связи с высокой пропускной способностью и зоной покрытия всей европейской территории. Последнее означало, что одни и те же мобильные телефоны могли использоваться во всех Европейских странах, и что входящие вызовы должны были автоматически направляться в мобильный телефон независимо от местонахождения пользователя (автоматический роуминг). Кроме того, ожидалось, что единый Европейский рынок с общими стандартами приведет к удешевлению пользовательского оборудования и сетевых элементов независимо от производителя.

 

 

 

Второе поколение мобильной связи (2G)

В 1982 году CEPT (франц. Conférence européenne des administrations des postes et télécommunications - Европейская конференция почтовых и телекоммуникационных ведомств) сформировала рабочую группу, названную специальной группой по подвижной связи GSM (франц. Groupe Spécial Mobile) для изучения и разработки пан-Европейской наземной системы подвижной связи общего применения - второе поколение систем сотовой телефонии (2G). Название рабочей группы GSM также стало использоваться в качестве названия системы подвижной связи. В 1989 году обязанности CEPT были переданы в Европейский институт стандартов в телекоммуникации ETSI (англ. European Telecommunications Standards Institute). Первоначально GSM предназначалась только для стран-членов ETSI. Однако многие другие страны также имеют реализованную систему GSM, например, Восточная Европа, Средний Восток, Азия, Африка, Тихоокеанский регион и Северная Америка (с производной от GSM, названной PCS1900). Название GSM стало означать "глобальная система для подвижной связи", что соответствует ее сущности.

Первые мобильные сети второго поколения (2G) появились в 1991 году. Их основным отличием от сетей первого поколения стал цифровой способ передачи информации, благодаря чему появилась, любимая многими, услуга обмена короткими текстовыми сообщениями SMS (англ. Short Messaging Service). При строительстве сетей второго поколения Европа пошла путем создания единого стандарта – GSM, в США большинство 2G-сетей было построена на базе стандарта D-AMPS (Digital AMPS – цифровой AMPS), являющегося модификацией аналогового AMPS. Кстати, именно это обстоятельство стало причиной появления американской версии стандарта GSM – GSM1900. С развитием и распространением Интернет, для мобильных устройств сетей 2G, был разработан WAP (англ. Wireless Application Protocol – беспроводной протокол передачи данных) – протокол беспроводного доступа к ресурсам глобальной сети Интернет непосредственно с мобильных телефонов.

Основными преимуществами сетей 2G по сравнению с предшественниками было то, что телефонные разговоры были зашифрованы с помощью цифрового шифрования; система 2G представила услуги передачи данных, начиная с текстовых сообщений СМС.

Растущая потребность пользователей мобильной связи в использовании Интернет с мобильных устройств основным толчком для появления сетей, поколения 2,5G, которые стали переходными между 2G и 3G. Сети 2,5G используют те же стандарты мобильной связи, что и сети 2G, но к имеющимся возможностям добавилась поддержка технологий пакетной передачи данных – GPRS (англ. General Packet Radio Service – пакетная радиосвязь общего пользования), EDGE (англ. Enhanced Data rates for GSM Evolution – повышенная скорость передачи для развития GSM) в сетях GSM. Использование пакетной передачи данных позволило увеличить скорость обмена информацией при работе с сетью Интернет с мобильного устройств до 384 кбит/с, вместо 9,6 кбит/с у 2G-сетей.

Система HSCSD (англ. High Speed Circuit Switched Data – высокоскоростная передача данных) является простейшей модернизацией системы GSM, предназначенной для передачи данных. Суть этой технологии заключалась в выделении одному абоненту не одного, а нескольких (теоретически до восьми) временных интервалов. Таким образом, максимальная скорость увеличивалась до 115,2 кбит/с. HSCSD обеспечивала скорость, достаточную для выхода в Интернет, однако, при передаче данных информационные пакеты разделены неопределенными по времени промежутками, таким образом, использование этой технологии крайне расточительно. Дело в том, что сети HSCSD, как и классические сети GSM, основаны на технологии коммутации каналов, в которых за абонентом закрепляют дуплексный канал на все время сеанса связи. Из-за пауз в передаче канальный ресурс расходовался нерационально.

Дальнейшей эволюцией системы GSM стала технология GPRS. Ее внедрение способствовало более эффективному использованию канального ресурса и созданию комфортной среды при работе с сетью Интернет. Система GPRS разработана как система пакетной передачи данных с теоретической максимальной скоростью передачи порядка 170 кбит/с. GPRS сосуществует с сетью GSM, повторно используя базовую структуру сети доступа. Система GPRS является расширением сетей GSM с предоставлением услуг передачи данных на существующей инфраструктуре, в то время как базовая сеть расширяется за счет наложения новых компонентов и интерфейсов, предназначенных для пакетной передачи.

Прогресс не стоял на месте и, для увеличения скорости передачи данных, была изобретена новая система – EDGE. Она предусматривала введение новой схемы модуляции. В результате стала достижима скорость в 384 кбит/с. EDGE была введена в сетях GSM с 2003 фирмой Cingular (ныне AT&T) в США.

Технологии GPRS и EDGE в разных источниках называли по-разному. Они уже переросли второе поколение, но еще не дотягивали до третьего. Зачастую GPRS называли 2,5G, EDGE – 2,75G.

Основные цифровые стандарты систем сотовой связи второго поколения:

  • D-AMPS (Digital AMPS - цифровой AMPS; диапазоны 800 МГц и 1900 МГц);
  • GSM (Global System for Mobile communications – глобальная система мобильной связи, диапазоны 900, 1800 и 1900 МГц);
  • CDMA (диапазоны 800 и 1900 МГц);
  • JDC (Japanese Digital Cellular – японский стандарт цифровой сотовой связи).

 

Табл. 2. Сравнение систем сотовой связи второго поколения (2G)

Сравнение систем сотовой связи второго поколения (2G)

 

 

 Третье поколение мобильной связи (3G)

Дальнейшим развитием сетей мобильной связи стал переход к третьему поколению (3G). 3G – это стандарт мобильной цифровой связи, который под аббревиатурой IMT-2000 (англ. International Mobile Telecommunications – международная мобильная связь 2000) объединяет пять стандартов – W-CDMA, CDMA2000, TD-CDMA/TD-SCDMA, DECT (англ. Digital Enhanced Cordless Telecommunication – технология улучшенной цифровой беспроводной связи). Из перечисленных составных частей 3G только первые три представляют собой полноценные стандарты сотовой связи третьего поколения. DECT – это стандарт беспроводной телефонии домашнего или офисного назначения, который в рамках мобильных технологий третьего поколения, может использоваться только для организации точек горячего подключения (хот-спотов) к данным сетям.

Стандарт IMT-2000 дает четкое определения сетей 3G – под мобильной сетью третьего поколения понимается интегрированная мобильная сеть, которая обеспечивает: для неподвижных абонентов скорость обмена информацией не менее 2048 кбит/с, для абонентов, движущихся со скоростью не более 3 км/ч - 384 кбит/с, для абонентов, перемещающихся со скоростью не более 120 км/ч – 144 кбит/с. При глобальном спутниковом покрытии сети 3G должны обеспечивать скорость обмена не менее 64 кбит/с. Основой всех стандартов третьего поколения являются протоколы множественного доступ с кодовым разделением каналов. Подобная технология сетевого доступа не является чем-то принципиально новым. Первая работа, посвященная этой теме, была опубликована в СССР еще в 1935 году Д.В. Агеевым.

Технически сети с кодовым разделением каналов работают следующим образом – каждому пользователю присваивается определенный числовой код, который распространяется по всей полосе частот, выделенных для работы сети. При этом какое-либо временное разделение сигналов отсутствует, и абоненты используют всю ширину канала. При этом, естественно, сигналы абонентов накладываются друг на друга, но благодаря числовому коду могут быть легко дифференцированы. Как было упомянуто выше, данная технология известна достаточно давно, однако до середины 80-х годов прошлого века она была засекреченной и использовалась исключительно военными и спецслужбами. После снятия грифов секретности началось ее активное использование и в гражданских системах связи.

Поколение 3,5G

Дальнейшим развитием сетей стала технология HSPA (англ. High Speed Packet Access – высокоскоростной пакетный доступ), которую стали именовать 3,5G. Изначально она позволяла достичь скорости в 14,4 Мбит/с, однако сейчас теоретически достижима скорость 84 Мбит/с и более. Впервые HSPA была описана в пятой версии стандартов 3GPP. В ее основе лежит теория, согласно которой при сопоставимых размерах сот применение многокодовой передачи позволяет достигать пиковых скоростей.

 

Четвертое поколение мобильной связи (4G)

В марте 2008 года сектор радиосвязи Международного союза электросвязи (МСЭ-Р) определил ряд требований для стандарта международной подвижной беспроводной широкополосной связи 4G, получившего название спецификаций International Mobile Telecommunications Advanced (IMT-Advanced), в частности установив требования к скорости передачи данных для обслуживания абонентов: скорость 100 Мбит/с должна предоставляться высокоподвижным абонентам (например, поездам и автомобилям), а абонентам с небольшой подвижностью (например пешеходам и фиксированным абонентам)должна предоставляться скорость 1 Гбит/с.

 

 

 

Так как первые версии мобильного WiMAX (англ. Worldwide Interoperability for Microwave Access – всемирная совместимость для микроволнового доступа) и LTE (англ. Long Term Evolution – долгосрочное развитие) поддерживают скорости значительно меньше 1 Гбит/с, их нельзя назвать технологиями, соответствующими IMT-Advanced, хотя они часто упоминаются поставщиками услуг, как технологии 4G. 6 декабря 2010 года МСЭ-Р признал, что наиболее продвинутые технологии рассматривают как 4G.

Основной, базовой, технологией четвёртого поколения является технология ортогонального частотного уплотнения OFDM (англ. Orthogonal Frequency-Division Multiplexing – мультиплексирование с ортогональным частотным разделением каналов). Кроме того, для максимальной скорости передачи используется технология передачи данных с помощью N антенн и их приёма М антеннами – MIMO (англ. Multiple Input/Multiple Output – множество входов/множество выходов). При данной технологии передающие и приёмные антенны разнесены так, чтобы достичь слабой корреляции между соседними антеннами.

 

Таким образом, эволюцию стандартов мобильной связи можно представить в следующем виде: 

Поколения мобильной связи

Рис. 1. Эволюция стандартов мобильной связи

 

Сравнительные характеристики стандартов различных поколений мобильной связи можно свести в следующую таблицу:

Табл.  3. Эволюция мобильной телефонии

1G

2G

3G

  • Аналоговая телефония
  • Мобильность
  • Базовые услуги
  • Несовместимость стандартов
  • Цифровая телефония и передача сообщений
  • Мобильность и роуминг
  • Поддержка передачи данных
  • Дополнительные услуги
  • Полуглобальное решение
  • Широкополосная передача данных и передача речи по протоколу IP (VoIP)
  • Мобильность и роуминг
  • Сервисная концепция и модели
  • Глобальное решение

c 1980-х

c 1990-х

c 2000-х


Поколения сотовой связи

Пятое поколение мобильной связи (5G)

В настоящее время ведутся предкоммерческие и коммерческие запуски сетей 5G. Подробнее о запусках сетей 5G в России и мире можно ознакомиться по соответствующим ссылкам.

К сетям пятого поколения заявлены следующие требования (в сравнении с LTE):

- Рост в 10-100 раз скорости передачи данных в расчете на абонента;

- Рост в 1000 раз среднего потребляемого трафика абонентом в месяц;

- Возможность обслуживания большего (в 100 раз) числа подключаемых к сети устройств;

- Многократное уменьшение потребление энергии абонентских устройств;

- Сокращение в 5 и более раз задержек в сети;

- Снижение общей стоимости эксплуатации сетей пятого поколения.Что такое "поколение" сетей сотовой связи?


Требования к сетям 5G в оцифрованном виде представлены по ссылке.

Более подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике "Мобильная связь на пути к 6G".

 

Читайте также:

Видео о 5G простым языком. Лекции по мобильной связи пятого поколения (5G)

Что такое 5G?

Канал о технологиях и известных людях в телекоме и ИТ "ТНД". Подписывайтесь!

Сети 5G: текущее состояние и перспективы развития. Интервью с автором книги «Мобильная связь на пути к 6G» Антоном Степутиным

Общие сведения о технологии LTE-Advanced

Преимущества и недостатки 3G по сравнению с 2G

На пути к 5G. Вебинар "Технические основы 4G/LTE и 5G" (для технических специалистов)

LTE

Международный Съезд ведущих специалистов отрасли телекоммуникаций TELECOMTREND

Расчет скорости в LTE

Официальная группа портала 1234G.ru вконтакте. Присоединяйтесь!

{jcomments on}

Яндекс.Метрика